National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
Device Proposal for Measurement and Evaluation of Environmental Thermal State
Janečka, Jan ; Němeček, Pavel (referee) ; Kratochvíl, Zdeněk (referee) ; Vdoleček, František (advisor)
The thesis deals with evaluation of the environmental thermal state in closed rooms with people inside the room. The achievement of thermal comfort is related to thermal balance of human body. People are producing heat during their work, which has to be carried away from the body to surrounding area by radiation, convection, conduction, respiration and evaporation. The intensity of heat removal is influenced by environmental parameters, especially by air temperature, mean radiant temperature, air velocity and humidity. Personal factors as energy expenditure of human body and clothing resistance are influencing the intensity of heat removal as well. People are able to influence the thermal comfort by their behaviour in given environment, appropriate clothing and regulation of basic environmental parameters. CSN EN ISO 7730 standard states that environmental parameters should be estimated or measured. The operative temperature is than evaluated from collected data. This operative temperature is defined as the temperature of black enclosed area where the human body will be by convection and radiation sharing the same amount of heat as in real inconsistent environment. Nowadays on the market there is no cheap solution for sensor which is able to evaluate the operating temperature and could be used in buildings. There are a lot of professional sensors which have very high accuracy, but are very expensive. Therefore are mainly used only for research or for single and exceptional measurement of environmental thermal state in rooms. The thesis is therefore focused on proposal of suitable (compact) operative temperature sensor assembled according to valid regulations and standards. Emphasis is placed mainly on the sensor price together with guarantee of sufficient accuracy. The proposed sensor is providing information to control system which is than able to adjust the parameters of environment using appropriate way based on relevant requirements. Here is some space for energy savings due to possible continuous measurement and evaluation of environmental thermal state in different rooms. Therefore, during continuous measurement no unnecessary rooms overheating in winter as well as unreasonable cooling in summer should occur. This research and solution is than reflected in reduction of energy consumption used for building operation and subsequently reduction of the pollutants production. This issue is being watched with increasing interest. Another advantage is that whole system is able to work autonomously without human intervention. People no longer have to continuously adjust air temperature because the control system is able to evaluate the most appropriate adjustments based on objective data obtained from the sensor. The thesis includes subsequent verification of proposed sensor as well as the definition of sensor technical parameters including analysis of measurement uncertainties.
Device Proposal for Measurement and Evaluation of Environmental Thermal State
Janečka, Jan ; Němeček, Pavel (referee) ; Kratochvíl, Zdeněk (referee) ; Vdoleček, František (advisor)
The thesis deals with evaluation of the environmental thermal state in closed rooms with people inside the room. The achievement of thermal comfort is related to thermal balance of human body. People are producing heat during their work, which has to be carried away from the body to surrounding area by radiation, convection, conduction, respiration and evaporation. The intensity of heat removal is influenced by environmental parameters, especially by air temperature, mean radiant temperature, air velocity and humidity. Personal factors as energy expenditure of human body and clothing resistance are influencing the intensity of heat removal as well. People are able to influence the thermal comfort by their behaviour in given environment, appropriate clothing and regulation of basic environmental parameters. CSN EN ISO 7730 standard states that environmental parameters should be estimated or measured. The operative temperature is than evaluated from collected data. This operative temperature is defined as the temperature of black enclosed area where the human body will be by convection and radiation sharing the same amount of heat as in real inconsistent environment. Nowadays on the market there is no cheap solution for sensor which is able to evaluate the operating temperature and could be used in buildings. There are a lot of professional sensors which have very high accuracy, but are very expensive. Therefore are mainly used only for research or for single and exceptional measurement of environmental thermal state in rooms. The thesis is therefore focused on proposal of suitable (compact) operative temperature sensor assembled according to valid regulations and standards. Emphasis is placed mainly on the sensor price together with guarantee of sufficient accuracy. The proposed sensor is providing information to control system which is than able to adjust the parameters of environment using appropriate way based on relevant requirements. Here is some space for energy savings due to possible continuous measurement and evaluation of environmental thermal state in different rooms. Therefore, during continuous measurement no unnecessary rooms overheating in winter as well as unreasonable cooling in summer should occur. This research and solution is than reflected in reduction of energy consumption used for building operation and subsequently reduction of the pollutants production. This issue is being watched with increasing interest. Another advantage is that whole system is able to work autonomously without human intervention. People no longer have to continuously adjust air temperature because the control system is able to evaluate the most appropriate adjustments based on objective data obtained from the sensor. The thesis includes subsequent verification of proposed sensor as well as the definition of sensor technical parameters including analysis of measurement uncertainties.
Device Proposal for Measurement and Evaluation of Environmental Thermal State
Janečka, Jan ; Vdoleček, František (advisor)
The thesis deals with evaluation of the environmental thermal state in closed rooms with people inside the room. The achievement of thermal comfort is related to thermal balance of human body. People are producing heat during their work, which has to be carried away from the body to surrounding area by radiation, convection, conduction, respiration and evaporation. The intensity of heat removal is influenced by environmental parameters, especially by air temperature, mean radiant temperature, air velocity and humidity. Personal factors as energy expenditure of human body and clothing resistance are influencing the intensity of heat removal as well. People are able to influence the thermal comfort by their behaviour in given environment, appropriate clothing and regulation of basic environmental parameters. CSN EN ISO 7730 standard states that environmental parameters should be estimated or measured. The operative temperature is than evaluated from collected data. This operative temperature is defined as the temperature of black enclosed area where the human body will be by convection and radiation sharing the same amount of heat as in real inconsistent environment. Nowadays on the market there is no cheap solution for sensor which is able to evaluate the operating temperature and could be used in buildings. There are a lot of professional sensors which have very high accuracy, but are very expensive. Therefore are mainly used only for research or for single and exceptional measurement of environmental thermal state in rooms. The thesis is therefore focused on proposal of suitable (compact) operative temperature sensor assembled according to valid regulations and standards. Emphasis is placed mainly on the sensor price together with guarantee of sufficient accuracy. The proposed sensor is providing information to control system which is than able to adjust the parameters of environment using appropriate way based on relevant requirements. Here is some space for energy savings due to possible continuous measurement and evaluation of environmental thermal state in different rooms. Therefore, during continuous measurement no unnecessary rooms overheating in winter as well as unreasonable cooling in summer should occur. This research and solution is than reflected in reduction of energy consumption used for building operation and subsequently reduction of the pollutants production. This issue is being watched with increasing interest. Another advantage is that whole system is able to work autonomously without human intervention. People no longer have to continuously adjust air temperature because the control system is able to evaluate the most appropriate adjustments based on objective data obtained from the sensor. The thesis includes subsequent verification of proposed sensor as well as the definition of sensor technical parameters including analysis of measurement uncertainties.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.